Painlevé monodromy manifolds, decorated character varieties and cluster algebras

Abstract :

In this paper we introduce the concept of decorated character variety for the Riemann surfaces arising in the theory of the Painlevé differential equations. Since all Painlevé differential equations (apart from the sixth one) exhibit Stokes phenomenon, it is natural to consider Riemann spheres with holes and bordered cusps on such holes. The decorated character is defined as complexification of the bordered cusped Teichm ̈uller spaceintroduced in [8]. We show that the decorated character variety of a Riemann sphere withs holes and n >1 cusps is a Poisson manifold of dimension 3s+ 2n−6 and we explicitly compute the Poisson brackets which are naturally of cluster type. We also show how to obtain the confluence procedure of the Painlevé differential equations in geometric terms.

Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01228533
Contributeur : Okina Université d'Angers <>
Soumis le : mercredi 18 novembre 2015 - 14:31:18
Dernière modification le : lundi 16 juillet 2018 - 18:58:01
Document(s) archivé(s) le : vendredi 19 février 2016 - 10:33:21

Fichier

1511.03851v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01228533, version 1
  • OKINA : ua14192

Collections

Citation

Leonid Chekhov, Marta Mazzocco, Vladimir Roubtsov. Painlevé monodromy manifolds, decorated character varieties and cluster algebras. 2015. 〈hal-01228533〉

Partager

Métriques

Consultations de la notice

157

Téléchargements de fichiers

91