Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds

Abstract : For a fat sub-Riemannian structure, we introduce three canonical Ricci curvatures in the sense of Agrachev-Zelenko-Li. Under appropriate bounds we prove comparison theorems for conjugate lengths, Bonnet-Myers type results and Laplacian comparison theorems for the intrinsic sub-Laplacian. As an application, we consider the sub-Riemannian structure of 3-Sasakian manifolds, for which we provide explicit curvature formulas. We prove that any complete 3-Sasakian structure of dimension 4d + 3, with d > 1, has sub-Riemannian diameter bounded by π. When d = 1, a similar statement holds under additional Ricci bounds. These results are sharp for the natural sub-Riemannian structure of the quaternionic Hopf fibrations on the 4d+3 dimensional sphere, whose exact sub-Riemannian diameter is π, for all d ≥ 1.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01221661
Contributeur : Luca Rizzi <>
Soumis le : mercredi 28 octobre 2015 - 13:27:25
Dernière modification le : samedi 18 février 2017 - 01:20:02
Document(s) archivé(s) le : vendredi 29 janvier 2016 - 13:18:56

Fichier

fat-comparison-v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01221661, version 1
  • ARXIV : 1509.05410

Citation

Luca Rizzi, Pavel Silveira. Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds. 2015. <hal-01221661>

Partager

Métriques

Consultations de
la notice

143

Téléchargements du document

45