Addressing high dimensionality in reliability analysis using low-rank tensor approximations

Abstract : Evaluation of tail probabilities in reliability analysis faces challenges in cases when complex models with high-dimensional random input are considered. To address such problems, we herein propose the use of surrogate models developed with low-rank tensor approximations. In this approach, the response quantity of interest is expressed as a sum of a few rank-one tensors. We first describe a non-intrusive method for building low-rank approximations using a greedy algorithm, which relies on the solution of minimization problems of only small size. In the sequel, we demonstrate the efficiency of meta-models built in this way in reliability applications involving the deflections of structural systems under static loads and the temperature in stationary heat conduction with spatially varying diffusion coefficient. Furthermore, we show that the proposed approach outperforms the popular meta-modeling technique of polynomial chaos expansions.
Type de document :
Communication dans un congrès
European Safety and Reliability Conference ESREL 2015, Sep 2015, Zürich, Switzerland. 2015, 〈10.1201/b19094-541〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01221021
Contributeur : Katerina Konakli <>
Soumis le : mardi 27 octobre 2015 - 11:54:46
Dernière modification le : jeudi 11 janvier 2018 - 06:22:26
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 10:41:35

Fichier

M25_232_FP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

K Konakli, Bruno Sudret. Addressing high dimensionality in reliability analysis using low-rank tensor approximations. European Safety and Reliability Conference ESREL 2015, Sep 2015, Zürich, Switzerland. 2015, 〈10.1201/b19094-541〉. 〈hal-01221021〉

Partager

Métriques

Consultations de la notice

78

Téléchargements de fichiers

143