UNCERTAINTY QUANTIFICATION IN HIGH-DIMENSIONAL SPACES WITH LOW-RANK TENSOR APPROXIMATIONS

Abstract : Polynomial chaos expansions have proven powerful for emulating responses of computational models with random input in a wide range of applications. However, they suffer from the curse of dimensionality, meaning the exponential growth of the number of unknown coefficients with the input dimension. By exploiting the tensor product form of the polynomial basis, low-rank approximations drastically reduce the number of unknown coefficients, thus providing a promising tool for effectively dealing with high-dimensional problems. In this paper, first, we investigate the construction of low-rank approximations with greedy approaches, where the coefficients along each dimension are sequentially updated and the rank of the decomposition is progressively increased. Furthermore, we demonstrate the efficiency of the approach in different applications, also in comparison with state-of-art methods of polynomial chaos expansions.
Type de document :
Communication dans un congrès
1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering, May 2015, Crete Island, Greece. 2015
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01221017
Contributeur : Katerina Konakli <>
Soumis le : mardi 27 octobre 2015 - 11:48:18
Dernière modification le : jeudi 11 janvier 2018 - 06:22:26
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 10:41:11

Fichier

U507.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01221017, version 1

Collections

Citation

Katerina Konakli, Bruno Sudret. UNCERTAINTY QUANTIFICATION IN HIGH-DIMENSIONAL SPACES WITH LOW-RANK TENSOR APPROXIMATIONS. 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering, May 2015, Crete Island, Greece. 2015. 〈hal-01221017〉

Partager

Métriques

Consultations de la notice

135

Téléchargements de fichiers

120