E. Bacry, K. Dayri, and J. Muzy, Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data, The European Physical Journal B, vol.96, issue.5, pp.1-12, 2012.
DOI : 10.1140/epjb/e2012-21005-8

URL : https://hal.archives-ouvertes.fr/hal-01313844

E. Bacry, S. Delattre, M. Hoffmann, and J. F. Muzy, Scaling limits for Hawkes processes and application to financial statistics, 2012.

P. Bao, H. Shen, X. Jin, and X. Cheng, Modeling and predicting popularity dynamics of microblogs using self-excited Hawkes processes. arXiv preprint, 2015.

M. J. Berry and M. Meister, Refractoriness and neural precision, Journal of Neuroscience, vol.18, issue.6, pp.2200-2211, 1998.

I. Bojak, T. F. Oostendorp, A. T. Reid, and R. Kötter, Connecting Mean Field Models of Neural Activity to EEG and fMRI Data, Brain Topography, vol.157, issue.60, pp.139-149, 2010.
DOI : 10.1007/s10548-010-0140-3

P. Brémaud, Point processes and queues, 1981.
DOI : 10.1007/978-1-4684-9477-8

P. Brémaud and L. Massoulié, Stability of nonlinear Hawkes processes, Ann. Probab, vol.24, issue.3, pp.1563-1588, 1996.

Y. Brenier, C. De-lellis, and L. Székelyhidi, Weak-Strong Uniqueness for Measure-Valued Solutions, Communications in Mathematical Physics, vol.50, issue.12, p.351, 2011.
DOI : 10.1007/s00220-011-1267-0

URL : http://arxiv.org/abs/0912.1028

N. Brunel and V. Hakim, Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates, Neural Computation, vol.15, issue.7, pp.1621-1671, 1999.
DOI : 10.1038/373612a0

J. A. Cañizo, J. A. Carrillo, and S. Cuadrado, Measure Solutions for Some Models in Population Dynamics, Acta Applicandae Mathematicae, vol.48, issue.3, pp.141-156, 2013.
DOI : 10.1007/s10440-012-9758-3

J. Chevallier, M. J. Cáceres, M. Doumic, P. Reynaud, and . Bouret, Microscopic approach of a time elapsed neural model, Mathematical Models and Methods in Applied Sciences, vol.25, issue.14, pp.252669-2719, 2015.
DOI : 10.1142/S021820251550058X

URL : https://hal.archives-ouvertes.fr/hal-01159215

J. Chevallier and T. Laloë, Detection of dependence patterns with delay, Biometrical Journal, vol.26, issue.6, pp.1110-1130, 2015.
DOI : 10.1002/bimj.201400235

URL : https://hal.archives-ouvertes.fr/hal-00998864

E. Chornoboy, L. Schramm, and A. Karr, Maximum likelihood identification of neural point process systems, Biological Cybernetics, vol.80, issue.4-5, pp.265-275, 1988.
DOI : 10.1080/01621459.1985.10477119

R. Crane and D. Sornette, Robust dynamic classes revealed by measuring the response function of a social system, Proceedings of the National Academy of Sciences, pp.15649-15653, 2008.
DOI : 10.1073/pnas.0803685105

F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Global solvability of a networked integrate-and-fire model of McKean???Vlasov type, The Annals of Applied Probability, vol.25, issue.4, pp.2096-2133, 2015.
DOI : 10.1214/14-AAP1044

URL : https://hal.archives-ouvertes.fr/hal-00747565

F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Particle systems with a singular mean-field self-excitation. Application to neuronal networks, Stochastic Processes and their Applications, pp.2451-2492, 2015.
DOI : 10.1016/j.spa.2015.01.007

URL : https://hal.archives-ouvertes.fr/hal-01001716

S. Delattre, N. Fournier, and M. Hoffmann, Hawkes processes on large networks, The Annals of Applied Probability, vol.26, issue.1, pp.216-261, 2016.
DOI : 10.1214/14-AAP1089

URL : https://hal.archives-ouvertes.fr/hal-01102806

R. J. Diperna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Communications in Mathematical Physics, vol.38, issue.4, pp.667-689, 1987.
DOI : 10.1007/BF01214424

O. Faugeras and J. Maclaurin, Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle, Comptes Rendus Mathematique, vol.352, issue.10, pp.841-846, 2014.
DOI : 10.1016/j.crma.2014.08.018

URL : https://hal.archives-ouvertes.fr/hal-01074827

O. Faugeras, J. Touboul, and B. Cessac, A constructive mean-field analysis of multi population neural networks with random synaptic weights and stochastic inputs, Frontiers in Computational Neuroscience, vol.3, 2009.
DOI : 10.3389/neuro.10.001.2009

URL : https://hal.archives-ouvertes.fr/inria-00258345

N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, pp.1-32, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00915365

N. Fournier and E. Löcherbach, On a toy model of interacting neurons. arXiv preprint, 2014.

M. G. Fuortes and F. Mantegazzini, Interpretation of the Repetitive Firing of Nerve Cells, The Journal of General Physiology, vol.45, issue.6, pp.1163-1179, 1962.
DOI : 10.1085/jgp.45.6.1163

A. Galves and E. Löcherbach, Modeling networks of spiking neurons as interacting processes with memory of variable length, 2015.

W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity, 2002.
DOI : 10.1017/CBO9780511815706

R. D. Gill, N. Keiding, and P. K. Andersen, Statistical models based on counting processes, 1997.

G. Gusto and S. Schbath, FADO: A Statistical Method to Detect Favored or Avoided Distances between Occurrences of Motifs using the Hawkes' Model, Statistical Applications in Genetics and Molecular Biology, vol.4, issue.1, 2005.
DOI : 10.2202/1544-6115.1119

N. R. Hansen, P. Reynaud-bouret, and V. Rivoirard, Lasso and probabilistic inequalities for multivariate point processes, Bernoulli, vol.21, issue.1, pp.83-143, 2015.
DOI : 10.3150/13-BEJ562

URL : https://hal.archives-ouvertes.fr/hal-00722668

A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, vol.58, issue.1, pp.83-90, 1971.
DOI : 10.1093/biomet/58.1.83

A. G. Hawkes and D. Oakes, A cluster process representation of a self-exciting process, Journal of Applied Probability, pp.493-503, 1974.

P. Hodara and E. Löcherbach, Abstract, Advances in Applied Probability, vol.22, issue.01, 2014.
DOI : 10.1017/S0143385700000924

Y. Y. Kagan, Statistical distributions of earthquake numbers: consequence of branching process, Geophysical Journal International, vol.180, issue.3, pp.1313-1328, 2010.
DOI : 10.1111/j.1365-246X.2009.04487.x

A. Klenke, Probability theory: a comprehensive course, 2007.

P. A. Lewis and G. S. Shedler, Simulation of nonhomogeneous poisson processes by thinning, Naval Research Logistics Quarterly, vol.32, issue.3, pp.403-413, 1979.
DOI : 10.1002/nav.3800260304

T. J. Liniger, Multivariate Hawkes processes, 2009.

E. Luçon and W. Stannat, Mean field limit for disordered diffusions with singular interactions, The Annals of Applied Probability, vol.24, issue.5, pp.1946-1993, 2014.
DOI : 10.1214/13-AAP968

L. Massoulié, Stability results for a general class of interacting point processes dynamics, and applications. Stochastic processes and their applications, pp.1-30, 1998.

S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Probabilistic models for nonlinear partial differential equations (Montecatini Terme, pp.42-95, 1995.
DOI : 10.1007/BF01055714

G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, Self-Exciting Point Process Modeling of Crime, Journal of the American Statistical Association, vol.106, issue.493, p.106, 2011.
DOI : 10.1198/jasa.2011.ap09546

Y. Ogata, On Lewis' simulation method for point processes, IEEE Transactions on Information Theory, vol.27, issue.1, pp.23-30, 1981.
DOI : 10.1109/TIT.1981.1056305

Y. Ogata, Space-Time Point-Process Models for Earthquake Occurrences, Annals of the Institute of Statistical Mathematics, vol.50, issue.2, pp.379-402, 1998.
DOI : 10.1023/A:1003403601725

K. Pakdaman, B. Perthame, and D. Salort, Dynamics of a structured neuron population, Nonlinearity, vol.23, issue.1, p.55, 2010.
DOI : 10.1088/0951-7715/23/1/003

URL : https://hal.archives-ouvertes.fr/hal-00387413

K. Pakdaman, B. Perthame, and D. Salort, Relaxation and Self-Sustained Oscillations in the Time Elapsed Neuron Network Model, SIAM Journal on Applied Mathematics, vol.73, issue.3, pp.1260-1279, 2013.
DOI : 10.1137/110847962

K. Pakdaman, B. Perthame, and D. Salort, Adaptation and Fatigue Model for Neuron Networks and Large Time Asymptotics in a Nonlinear Fragmentation Equation, The Journal of Mathematical Neuroscience, vol.4, issue.1, pp.1-26, 2014.
DOI : 10.1016/j.jmaa.2005.12.036

URL : https://hal.archives-ouvertes.fr/hal-01054561

B. Perthame, Transport equations in biology, 2006.

C. Pouzat and A. Chaffiol, Automatic spike train analysis and report generation. An implementation with R, R2HTML and STAR, Journal of Neuroscience Methods, vol.181, issue.1, pp.119-144, 2009.
DOI : 10.1016/j.jneumeth.2009.01.037

URL : https://hal.archives-ouvertes.fr/hal-00725386

C. Quininao, A microscopic spiking neuronal network for the age-structured model. arXiv preprint, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121061

P. Reynaud-bouret, V. Rivoirard, F. Grammont, and C. Tuleau-malot, Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis, The Journal of Mathematical Neuroscience, vol.4, issue.1, pp.1-41, 2014.
DOI : 10.1109/TIT.1981.1056305

URL : https://hal.archives-ouvertes.fr/hal-01100718

P. Reynaud-bouret and S. Schbath, Adaptive estimation for Hawkes processes; application to genome analysis. The Annals of Statistics, pp.2781-2822, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00863958

F. Roueff, R. V. Sachs, and L. Sansonnet, Time-frequency analysis of locally stationary Hawkes processes. prepublication on HAL, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01502252

A. Sznitman, Topics in propagation of chaos, Lecture Notes in Math, vol.22, issue.1, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689

G. L. Torrisi, Gaussian approximation of nonlinear Hawkes processes, The Annals of Applied Probability, vol.26, issue.4, pp.2106-2140
DOI : 10.1214/15-AAP1141

G. L. Torrisi, Poisson approximation of point processes with stochastic intensity, and application to nonlinear Hawkes processes, Ann. Inst. H. Poincaré Probab. Statist

L. Zhu, Central Limit Theorem for Nonlinear Hawkes Processes, Journal of Applied Probability, vol.I, issue.03, pp.760-771, 2013.
DOI : 10.1214/aop/1065725193

URL : http://arxiv.org/abs/1204.1067

L. Zhu, Nonlinear Hawkes Processes, 2013.

L. Zhu, Process-level large deviations for nonlinear Hawkes point processes, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.50, issue.3, pp.845-871, 2014.
DOI : 10.1214/12-AIHP532

URL : http://arxiv.org/abs/1108.2431

L. Zhu, Large deviations for Markovian nonlinear Hawkes processes, The Annals of Applied Probability, vol.25, issue.2, pp.548-581
DOI : 10.1214/14-AAP1003