Skip to Main content Skip to Navigation
Journal articles

Adaptive estimation for Hawkes processes; application to genome analysis

Abstract : The aim of this paper is to provide a new method for the detection of either favored or avoided distances between genomic events along DNA sequences. These events are modeled by a Hawkes process. The biological problem is actually complex enough to need a nonasymptotic penalized model selection approach. We provide a theoretical penalty that satisfies an oracle inequality even for quite complex families of models. The consecutive theoretical estimator is shown to be adaptive minimax for H\"{o}lderian functions with regularity in $(1/2,1]$: those aspects have not yet been studied for the Hawkes' process. Moreover, we introduce an efficient strategy, named Islands, which is not classically used in model selection, but that happens to be particularly relevant to the biological question we want to answer. Since a multiplicative constant in the theoretical penalty is not computable in practice, we provide extensive simulations to find a data-driven calibration of this constant. The results obtained on real genomic data are coherent with biological knowledge and eventually refine them.
Complete list of metadatas

Cited literature [25 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00863958
Contributor : Patricia Reynaud-Bouret <>
Submitted on : Friday, September 20, 2013 - 9:22:22 AM
Last modification on : Tuesday, December 8, 2020 - 10:21:42 AM
Long-term archiving on: : Saturday, December 21, 2013 - 4:24:42 AM

File

aossophie.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Patricia Reynaud-Bouret, Sophie Schbath. Adaptive estimation for Hawkes processes; application to genome analysis. Annals of Statistics, Institute of Mathematical Statistics, 2010, 38 (5), pp.2781-2822. ⟨10.1214/10-AOS806⟩. ⟨hal-00863958⟩

Share

Metrics

Record views

796

Files downloads

728