Proper Generalized Decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimization

Abstract : First, the effectivity of classical Proper Generalized Decomposition (PGD) computational methods is analyzed on a one dimensional transient diffusion benchmark problem, with a moving load. Classical PGD methods refer to Galerkin, Petrov–Galerkin and Minimum Residual formulations. A new and promising PGD computational method based on the Constitutive Relation Error concept is then proposed and provides an improved, immediate and robust reduction error estimation. All those methods are compared to a reference Singular Value Decomposition reduced solution using the energy norm. Eventually, the variable separation assumption itself (here time and space) is analyzed with respect to the loading velocity.
Type de document :
Article dans une revue
Advanced Modeling and Simulation in Engineering Sciences, SpringerOpen, 2015, 〈10.1186/s40323-015-0038-4〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01216233
Contributeur : Pierre-Eric Allier <>
Soumis le : jeudi 15 octobre 2015 - 18:09:58
Dernière modification le : samedi 23 mars 2019 - 01:29:40

Lien texte intégral

Identifiants

Citation

Pierre-Eric Allier, Ludovic Chamoin, Pierre Ladevèze. Proper Generalized Decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimization. Advanced Modeling and Simulation in Engineering Sciences, SpringerOpen, 2015, 〈10.1186/s40323-015-0038-4〉. 〈hal-01216233〉

Partager

Métriques

Consultations de la notice

104