Kernel spectral clustering of large dimensional data

Abstract : This article proposes a first analysis of kernel spectral clustering methods in the regime where the dimension p of the data vectors to be clustered and their number n grow large at the same rate. We demonstrate, under a k-class Gaussian mixture model, that the normalized Laplacian matrix associated with the kernel matrix asymptotically behaves similar to a so-called spiked random matrix. Some of the isolated eigenvalue-eigenvector pairs in this model are shown to carry the clustering information upon a separability condition classical in spiked matrix models. We evaluate precisely the position of these eigenvalues and the content of the eigenvectors, which unveil important (sometimes quite disruptive) aspects of kernel spectral clustering both from a theoretical and practical standpoints. Our results are then compared to the actual clustering performance of images from the MNIST database, thereby revealing an important match between theory and practice.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2016, 10 (1), pp.1393-1454. 〈10.1214/16-EJS1144〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01215343
Contributeur : Florent Benaych-Georges <>
Soumis le : mercredi 14 octobre 2015 - 06:07:40
Dernière modification le : jeudi 31 mai 2018 - 09:12:02

Lien texte intégral

Identifiants

Citation

Romain Couillet, Florent Benaych-Georges. Kernel spectral clustering of large dimensional data. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2016, 10 (1), pp.1393-1454. 〈10.1214/16-EJS1144〉. 〈hal-01215343〉

Partager

Métriques

Consultations de la notice

220