2-additive Choquet Optimal Solutions in Multiobjective Optimization Problems

Thibaut Lust 1 Antoine Rolland
1 DECISION
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : In this paper, we propose a sufficient condition for a solution to be optimal for a 2-additive Choquet integral in the context of multiobjective combinatorial optimization problems. A 2-additive Choquet optimal solution is a solution that optimizes at least one set of parameters of the 2-additive Choquet integral. We also present a method to generate 2-additive Choquet optimal solutions of multiobjective combinatorial optimization problems. The method is experimented on some Pareto fronts and the results are analyzed.
Document type :
Conference papers
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01212735
Contributor : Lip6 Publications <>
Submitted on : Wednesday, October 7, 2015 - 10:33:40 AM
Last modification on : Thursday, March 21, 2019 - 2:22:37 PM

Identifiers

Citation

Thibaut Lust, Antoine Rolland. 2-additive Choquet Optimal Solutions in Multiobjective Optimization Problems. Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Jul 2014, Montpellier, France. 442, pp.256-265, Communications in Computer and Information Science. 〈10.1007/978-3-319-08795-5_27〉. 〈hal-01212735〉

Share

Metrics

Record views

42