A Hybrid High-Order method for the Cahn-Hilliard problem in mixed form

Abstract : In this work, we develop a fully implicit Hybrid High-Order algorithm for the Cahn–Hilliard problem in mixed form. The space discretization hinges on local reconstruction operators from hybrid polynomial unknowns at elements and faces. The proposed method has several assets: (i) It supports fairly general meshes possibly containing polygonal elements and nonmatching interfaces; (ii) it allows arbitrary approximation orders; (iii) it has a moderate computational cost thanks to the possibility of locally eliminating element-based unknowns by static condensation. We perform a detailed stability and convergence study, proving optimal convergence rates in energy-like norms. Numerical validation is also provided using some of the most common tests in the literature.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016, 54 (3), pp.1873-1898. 〈10.1137/15M1041055〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01203733
Contributeur : Florent Chave <>
Soumis le : vendredi 8 avril 2016 - 18:10:06
Dernière modification le : jeudi 13 décembre 2018 - 14:44:56
Document(s) archivé(s) le : mardi 15 novembre 2016 - 00:02:10

Fichier

chho.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Florent Chave, Daniele Antonio Di Pietro, Fabien Marche, Franck Pigeonneau. A Hybrid High-Order method for the Cahn-Hilliard problem in mixed form. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016, 54 (3), pp.1873-1898. 〈10.1137/15M1041055〉. 〈hal-01203733v2〉

Partager

Métriques

Consultations de la notice

555

Téléchargements de fichiers

252