A Review of Features for the Discrimination of Twitter Users: Application to the Prediction of Offline Influence

Abstract : Many works related to Twitter aim at characterizing its users in some way: role on the service (spammers, bots, organizations, etc.), nature of the user (socio-professional category, age, etc.), topics of interest , and others. However, for a given user classification problem, it is very difficult to select a set of appropriate features, because the many features described in the literature are very heterogeneous, with name overlaps and collisions, and numerous very close variants. In this article, we review a wide range of such features. In order to present a clear state-of-the-art description, we unify their names, definitions and relationships, and we propose a new, neutral, typology. We then illustrate the interest of our review by applying a selection of these features to the offline influence detection problem. This task consists in identifying users which are influential in real-life, based on their Twitter account and related data. We show that most features deemed efficient to predict online influence, such as the numbers of retweets and followers, are not relevant to this problem. However, We propose several content-based approaches to label Twitter users as Influencers or not. We also rank them according to a predicted influence level. Our proposals are evaluated over the CLEF RepLab 2014 dataset, and outmatch state-of-the-art methods.
Document type :
Journal articles
Complete list of metadatas

Cited literature [1 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01203171
Contributor : Vincent Labatut <>
Submitted on : Thursday, July 28, 2016 - 11:18:44 AM
Last modification on : Friday, March 22, 2019 - 11:34:07 AM
Long-term archiving on : Saturday, October 29, 2016 - 10:16:26 AM

Files

snam.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Identifiers

Collections

Citation

Jean-Valère Cossu, Vincent Labatut, Nicolas Dugué. A Review of Features for the Discrimination of Twitter Users: Application to the Prediction of Offline Influence. Social Network Analysis and Mining, Springer, 2016, 6 (1), pp.25. ⟨http://link.springer.com/article/10.1007/s13278-016-0329-x⟩. ⟨10.1007/s13278-016-0329-x⟩. ⟨hal-01203171v3⟩

Share

Metrics

Record views

177

Files downloads

2464