Multiple Metric Learning for large margin kNN Classification of time series

Abstract : Time series are complex data objects, they may present noise, varying delays or involve several temporal granularities. To classify time series, promising solutions refer to the combination of multiple basic metrics to compare time series according to several characteristics. This work proposes a new framework to learn a combination of multiple metrics for a robust kNN classifier. By introducing the concept of pairwise space, the combination function is learned in this new space through a "large margin" optimization process. We apply it to compare time series on both their values and behaviors. The efficiency of the learned metric is compared to the major alternative metrics on large public datasets.
Type de document :
Communication dans un congrès
23rd European Signal Processing Conference (EUSIPCO-2015), Sep 2015, Nice, France
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01202045
Contributeur : Michele Rombaut <>
Soumis le : mercredi 30 septembre 2015 - 11:58:24
Dernière modification le : vendredi 26 février 2016 - 16:36:07
Document(s) archivé(s) le : jeudi 31 décembre 2015 - 10:12:03

Fichier

Do et al. - 2015 - Multiple Me...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01202045, version 1

Collections

Citation

Cao-Tri Do, Ahlame Douzal-Chouakria, Sylvain Marié, Michèle Rombaut. Multiple Metric Learning for large margin kNN Classification of time series. 23rd European Signal Processing Conference (EUSIPCO-2015), Sep 2015, Nice, France. <hal-01202045>

Partager

Métriques

Consultations de
la notice

372

Téléchargements du document

195