Fuzzy data mining and management of interpretable and subjective information

Christophe Marsala 1, * Bernadette Bouchon-Meunier 1
* Corresponding author
1 LFI - Learning, Fuzzy and Intelligent systems
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : Fuzzy set theory offers an important contribution to data mining leading to fuzzy data mining. It enables the management of interpretable and subjective information in both input and output of the data mining process. In this paper, we discuss the notion of interpretability in fuzzy data mining and we present some references on the management of emotions as a particular kind of subjective information.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [43 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-01198847
Contributor : Gestionnaire Hal-Upmc <>
Submitted on : Monday, September 14, 2015 - 3:02:29 PM
Last modification on : Thursday, March 21, 2019 - 2:49:06 PM
Document(s) archivé(s) le : Tuesday, December 29, 2015 - 1:42:17 AM

File

Marsala_Fuzzy_data_mining.pdf
Files produced by the author(s)

Identifiers

Citation

Christophe Marsala, Bernadette Bouchon-Meunier. Fuzzy data mining and management of interpretable and subjective information. Fuzzy Sets and Systems, Elsevier, 2015, 281, pp.252-259. ⟨10.1016/j.fss.2015.08.021⟩. ⟨hal-01198847⟩

Share

Metrics

Record views

250

Files downloads

84