Self-stabilizing gathering with strong multiplicity detection

Yoann Dieudonné 1 Franck Petit 2
2 Regal - Large-Scale Distributed Systems and Applications
LIP6 - Laboratoire d'Informatique de Paris 6, Inria Paris-Rocquencourt
Abstract : In this paper, we investigate the possibility to deterministically solve the gathering problem starting from an arbitrary configuration with weak robots, i.e., anonymous, autonomous, disoriented, oblivious, and devoid of means of communication. By starting from an arbitrary configuration, we mean that robots are not required to be located at distinct positions in the initial configuration. We introduce strong multiplicity detection as the ability for the robots to detect the exact number of robots located at a given position. We show that with strong multiplicity detection, there exists a deterministic algorithm solving the gathering problem starting from an arbitrary configuration for $n$ robots if, and only if, n is odd.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2012, 428, pp.47-57. 〈10.1016/j.tcs.2011.12.010〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01197406
Contributeur : Lip6 Publications <>
Soumis le : vendredi 11 septembre 2015 - 16:10:12
Dernière modification le : mardi 11 décembre 2018 - 01:23:18

Lien texte intégral

Identifiants

Citation

Yoann Dieudonné, Franck Petit. Self-stabilizing gathering with strong multiplicity detection. Theoretical Computer Science, Elsevier, 2012, 428, pp.47-57. 〈10.1016/j.tcs.2011.12.010〉. 〈hal-01197406〉

Partager

Métriques

Consultations de la notice

142