Detecting topics and overlapping communities in Question and Answer sites

Abstract : In many social networks, people interact based on their interests. Community detection algorithms are then useful to reveal the sub-structures of a network and in particular interest groups. Identifying these users' communities and the interests that bind them can help us assist their life-cycle. Certain kinds of online communities such as question-and-answer (Q&A) sites, have no explicit social network structure. Therefore, many traditional community detection techniques do not apply directly. In this paper, we propose an efficient approach for extracting topic from Q&A to detect communities of interest. Then we compare three detection methods we applied on a dataset extracted from the popular Q&A site StackOverflow. Our method based on topic modeling and user membership assignment is shown to be much simpler and faster while preserving the quality of the detection.
Type de document :
Article dans une revue
Social Network Analysis and Mining, Springer, 2015, 5 (1), pp.27:1--27:17. 〈10.1007/s13278-015-0268-y〉
Domaine :
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01187445
Contributeur : Catherine Faron Zucker <>
Soumis le : mercredi 13 juillet 2016 - 18:23:31
Dernière modification le : mercredi 13 décembre 2017 - 10:16:05

Fichier

snam_journal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Zide Meng, Fabien Gandon, Catherine Faron Zucker, Ge Song. Detecting topics and overlapping communities in Question and Answer sites. Social Network Analysis and Mining, Springer, 2015, 5 (1), pp.27:1--27:17. 〈10.1007/s13278-015-0268-y〉. 〈hal-01187445〉

Partager

Métriques

Consultations de la notice

394

Téléchargements de fichiers

259