Interface dynamics of a metastable mass-conserving spatially extended diffusion

Abstract : We study the metastable dynamics of a discretised version of the mass-conserving stochastic Allen-Cahn equation. Consider a periodic one-dimensional lattice with N sites, and attach to each site a real-valued variable, which can be interpreted as a spin, as the concentration of one type of metal in an alloy, or as a particle density. Each of these variables is subjected to a local force deriving from a symmetric double-well potential, to a weak ferromagnetic coupling with its nearest neighbours, and to independent white noise. In addition, the dynamics is constrained to have constant total magnetisation or mass. Using tools from the theory of metastable diffusion processes, we show that the long-term dynamics of this system is similar to a Kawasaki-type exchange dynamics , and determine explicit expressions for its transition probabilities. This allows us to describe the system in terms of the dynamics of its interfaces, and to compute an Eyring-Kramers formula for its spectral gap. In particular, we obtain that the spectral gap scales like the inverse system size squared.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2016, 162 (2), pp.334-370. 〈http://link.springer.com/article/10.1007/s10955-015-1415-6〉. 〈10.1007/s10955-015-1415-6〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01184873
Contributeur : Nils Berglund <>
Soumis le : mardi 18 août 2015 - 10:41:16
Dernière modification le : jeudi 7 février 2019 - 14:44:01
Document(s) archivé(s) le : jeudi 19 novembre 2015 - 10:52:34

Fichier

interface.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nils Berglund, Sébastien Dutercq. Interface dynamics of a metastable mass-conserving spatially extended diffusion. Journal of Statistical Physics, Springer Verlag, 2016, 162 (2), pp.334-370. 〈http://link.springer.com/article/10.1007/s10955-015-1415-6〉. 〈10.1007/s10955-015-1415-6〉. 〈hal-01184873〉

Partager

Métriques

Consultations de la notice

404

Téléchargements de fichiers

58