Ice sliding games

Paul Dorbec 1, 2 Eric Duchêne 3 André Fabbri 4 Julien Moncel 5 Aline Parreau 3 Eric Sopena 1, 2
1 Combinatoire et Algorithmique
LaBRI - Laboratoire Bordelais de Recherche en Informatique
3 GOAL - Graphes, AlgOrithmes et AppLications
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
4 SMA - Systèmes Multi-Agents
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
5 LAAS-ROC - Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes
LAAS - Laboratoire d'analyse et d'architecture des systèmes [Toulouse]
Abstract : This paper deals with sliding games, which are a variant of the better known pushpush game. On a given structure (grid, torus...), a robot can move in a specific set of directions, and stops when it hits a block or boundary of the structure. The objective is to place the minimum number of blocks such that the robot can visit all the possible positions of the structure. In particular, we give the exact value of this number when playing on a rectangular grid and a torus. Other variants of this game are also considered, by constraining the robot to stop on each case, or by replacing blocks by walls.
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download
Contributor : Aline Parreau <>
Submitted on : Thursday, July 2, 2015 - 2:14:14 PM
Last modification on : Friday, June 14, 2019 - 6:31:08 PM
Long-term archiving on : Tuesday, April 25, 2017 - 9:08:10 PM


Files produced by the author(s)



Paul Dorbec, Eric Duchêne, André Fabbri, Julien Moncel, Aline Parreau, et al.. Ice sliding games. International Journal of Game Theory, Springer Verlag, 2018, 47 (2), pp.487-508. ⟨10.1007/s00182-017-0607-5⟩. ⟨hal-01170310⟩



Record views


Files downloads