Dynamic knowledge model evolution in SWoT: a way to improve services selection relevancy over time

Abstract : Semantic web technologies are gaining momentum in the WoT (Web of Things) community for its promising ability to manage the increasing semantic heterogeneity between devices (Semantic Web of Things, SWoT) in ambient environments. However, most of the approaches rely on ad-hoc and static knowledge models (ontologies) designed for specific domains and applications. While it is a solution for handling the semantic heterogeneity issue, it offers no perspective in term of ontology evolution over time. We study in this paper several approaches allowing: (1) to handle the semantic heterogeneity issue; (2) to capitalize the knowledge contributions throughout the life of the system allowing it to potentially better assist people in their environment over time. One of the approaches is validated on two real use-cases.
Type de document :
Rapport
[Research Report] Universite de Nice Sophia-Antipolis (UNS); CNRS. 2015
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01168411
Contributeur : Stéphane Lavirotte <>
Soumis le : jeudi 25 juin 2015 - 18:00:32
Dernière modification le : vendredi 16 septembre 2016 - 15:15:25
Document(s) archivé(s) le : mercredi 16 septembre 2015 - 00:41:49

Fichier

Rapport_I3S.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01168411, version 1

Collections

I3S | UNICE | LARA

Citation

Gérald Rocher, Jean-Yves Tigli, Stéphane Lavirotte, Rahma Daikhi. Dynamic knowledge model evolution in SWoT: a way to improve services selection relevancy over time. [Research Report] Universite de Nice Sophia-Antipolis (UNS); CNRS. 2015. <hal-01168411>

Partager

Métriques

Consultations de
la notice

128

Téléchargements du document

192