Numerical Simulation of Long Wave Runup for Breaking and Nonbreaking Waves - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Offshore and Polar Engineering (IJOPE) Année : 2015

Numerical Simulation of Long Wave Runup for Breaking and Nonbreaking Waves

Résumé

Tsunamis produce a wealth of quantitative data that can be used to improve tsunami hazard awareness and to increase the preparedness of the population at risk. These data also allow for a performance evaluation of the coastal infrastructure and observations of sediment transport, erosion, and deposition. The interaction of the tsunami with coastal infrastructures and with the movable sediment bed is a three-dimensional process. Therefore, for runup and inundation prediction, three-dimensional numerical models must be employed. In this study, we have employed Smoothed Particle Hydrodynamics (SPH) to simulate tsunami runup on idealized geometries for the validation and exploration of three-dimensional flow structures in tsunamis. We make use of the canonical experiments for long-wave runup for breaking and nonbreaking waves. The results of our study prove that SPH is able to reproduce the runup of long waves for different initial and geometric conditions. We have also investigated the applicability and the effectiveness of different viscous terms that are available in the SPH literature. Additionally, a new breaking criterion based on numerical experiments is introduced, and its similarities and differences with existing criteria are discussed.
Fichier non déposé

Dates et versions

hal-01161694 , version 1 (08-06-2015)

Identifiants

  • HAL Id : hal-01161694 , version 1

Citer

M.S. Shadloo, Robert Weiss, M. Yildiz, Robert Dalrymple. Numerical Simulation of Long Wave Runup for Breaking and Nonbreaking Waves. International Journal of Offshore and Polar Engineering (IJOPE), 2015, 25(1), http://www.isope.org/publications/journals/ijope-25-1/abst-25-1-p001-ak04-Shadloo.pdf. ⟨hal-01161694⟩
83 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More