Sub-Riemannian curvature in contact geometry

Abstract : We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standard tensors of contact geometry. As an application of these results, we obtain a sub-Riemannian version of the Bonnet-Myers theorem that applies to any contact manifold.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01160901
Contributeur : Luca Rizzi <>
Soumis le : dimanche 21 février 2016 - 10:05:49
Dernière modification le : samedi 18 février 2017 - 01:13:46
Document(s) archivé(s) le : dimanche 22 mai 2016 - 10:30:19

Fichier

ContactCurv v11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Andrei Agrachev, Davide Barilari, Luca Rizzi. Sub-Riemannian curvature in contact geometry. Journal of Geometric Analysis, 2016, <10.1007/s12220-016-9684-0>. <hal-01160901v3>

Partager

Métriques

Consultations de
la notice

302

Téléchargements du document

191