Wave dynamics on networks: method and application to the sine-Gordon equation

Abstract : We consider a scalar Hamiltonian nonlinear wave equation formulated on networks; this is a non standard problem because these domains are not locally homeomorphic to any subset of the Euclidean space. More precisely, we assume each edge to be a 1D uniform line with end points identified with graph vertices. The interface conditions at these vertices are introduced and justified using conservation laws and an homothetic argument. We present a detailed methodology based on a symplectic finite difference scheme together with a special treatment at the junctions to solve the problem and apply it to the sine-Gordon equation. Numerical results on a simple graph containing four loops show the performance of the scheme for kinks and breathers initial conditions.
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01160840
Contributeur : Denys Dutykh <>
Soumis le : lundi 26 juin 2017 - 20:21:56
Dernière modification le : mercredi 4 octobre 2017 - 01:10:45

Fichiers

DD-JGC-SGTrees-2017.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

  • HAL Id : hal-01160840, version 2
  • ARXIV : 1506.02405

Collections

Citation

Denys Dutykh, Jean-Guy Caputo. Wave dynamics on networks: method and application to the sine-Gordon equation. 30 pages, 9 figures, 2 tables, 36 references. Other author's papers can be downloaded at http://w.. 2015. 〈hal-01160840v2〉

Partager

Métriques

Consultations de
la notice

125

Téléchargements du document

28