Interpreting microarray experiments via co-expressed gene groups analysis

Ricardo Martinez 1 Nicolas Pasquier 1, * Claude Pasquier 2 Lucero Lopez-Perez 3
* Auteur correspondant
3 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : Microarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of huge data using different sources of information. We propose a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co- expressed. CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology (GO)1. By applying CGGA to well-known microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments.
Type de document :
Communication dans un congrès
Springer. DS'2006 international conference on Discovery Science, Oct 2006, Barcelona, France. 4265, pp.316-320, 2006, Lecture Notes in Artificial Intelligence. 〈10.1007/11893318_34〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00362761
Contributeur : Nicolas Pasquier <>
Soumis le : lundi 26 avril 2010 - 00:20:06
Dernière modification le : lundi 4 décembre 2017 - 15:14:13
Document(s) archivé(s) le : mardi 14 septembre 2010 - 17:01:03

Fichier

Interpreting_microarray_experi...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

INRIA | I3S | UNICE | PSL

Citation

Ricardo Martinez, Nicolas Pasquier, Claude Pasquier, Lucero Lopez-Perez. Interpreting microarray experiments via co-expressed gene groups analysis. Springer. DS'2006 international conference on Discovery Science, Oct 2006, Barcelona, France. 4265, pp.316-320, 2006, Lecture Notes in Artificial Intelligence. 〈10.1007/11893318_34〉. 〈hal-00362761〉

Partager

Métriques

Consultations de la notice

431

Téléchargements de fichiers

198