Global vs local search on multi-objective NK-landscapes: contrasting the impact of problem features

Abstract : Computationally hard multi-objective combinatorial optimization problems are common in practice, and numerous evolutionary multi-objective optimization (EMO) algorithms have been proposed to tackle them. Our aim is to understand which (and how) problem features impact the search performance of such approaches. In this paper, we consider two prototypical dominance-based algorithms: a global EMO strategy using an ergodic variation operator (GSEMO) and a neighborhood-based local search heuristic (PLS). Their respective runtime is estimated on a benchmark of combinatorial problems with tunable ruggedness, objective space dimension, and objective correlation (ρMNK-landscapes). In other words, benchmark parameters define classes of instances with increasing empirical problem hardness; we enumerate and characterize the search space of small instances. Our study departs from simple performance comparison to systematically analyze the correlations between runtime and problem features, contrasting their association with search performance within and across instance classes, for both chosen algorithms. A mixed-model approach then allows us to further generalize from the experimental design, supporting a sound assessment of the joint impact of instance features on EMO search performance.
Type de document :
Communication dans un congrès
Genetic and Evolutionary Computation Conference (GECCO 2015), Jul 2015, Madrid, Spain. pp.369-376, 2015, Genetic and Evolutionary Computation Conference (GECCO 2015). 〈10.1145/2739480.2754745〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01151882
Contributeur : Arnaud Liefooghe <>
Soumis le : mercredi 4 janvier 2017 - 13:42:57
Dernière modification le : vendredi 22 mars 2019 - 01:34:01
Document(s) archivé(s) le : mercredi 5 avril 2017 - 12:03:14

Fichier

auteur-version.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fabio Daolio, Arnaud Liefooghe, Sébastien Verel, Hernan Aguirre, Kiyoshi Tanaka. Global vs local search on multi-objective NK-landscapes: contrasting the impact of problem features. Genetic and Evolutionary Computation Conference (GECCO 2015), Jul 2015, Madrid, Spain. pp.369-376, 2015, Genetic and Evolutionary Computation Conference (GECCO 2015). 〈10.1145/2739480.2754745〉. 〈hal-01151882〉

Partager

Métriques

Consultations de la notice

790

Téléchargements de fichiers

147