Single Document Keyphrase Extraction Using Sentence Clustering and Latent Dirichlet Allocation

Abstract : This paper describes the design of a system for extracting keyphrases from a single document The principle of the algorithm is to cluster sentences of the documents in order to highlight parts of text that are semantically related. The clusters of sentences, that reflect the themes of the document, are then analyzed to find the main topics of the text. Finally, the most important words, or groups of words, from these topics are proposed as keyphrases.
Type de document :
Communication dans un congrès
5th International Workshop on Semantic Evaluation (SemEval '10), Jul 2010, Uppsala, Sweden
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01151516
Contributeur : Claude Pasquier <>
Soumis le : mercredi 13 mai 2015 - 06:38:09
Dernière modification le : jeudi 3 mai 2018 - 13:08:47

Identifiants

  • HAL Id : hal-01151516, version 1

Collections

Citation

Claude Pasquier. Single Document Keyphrase Extraction Using Sentence Clustering and Latent Dirichlet Allocation. 5th International Workshop on Semantic Evaluation (SemEval '10), Jul 2010, Uppsala, Sweden. 〈hal-01151516〉

Partager

Métriques

Consultations de la notice

69