Skip to Main content Skip to Navigation
Journal articles

Global carbon budget 2014

Corinne Le Quéré 1, * Robbie M. Andrew 2 Glen P. Peters 2 Philippe Ciais 3, 4 Pierre Friedlingstein 5 Stephen D. Jones 1 Stephen Sitch 6 Pieter P. Tans 7 Almut Arneth 5 Thomas A. Boden 8 Laurent Bopp 3 Yves Bozec 9 Josep G. Canadell 10 Louise P. Chini 11 Frédéric Chevallier 3, 12 Catherine E. Cosca 13 Ian Harris 14 Mario Hoppema 15 Richard A. Houghton 16 J. I. House 17 Atul K. Jain 18 Truls Johannessen 19, 20 Etsushi Kato 21 Ralph F. Keeling 22 Vassilis Kitidis 23 Kees Klein Goldewijk 24 C. Koven 25, 21 Camilla S. Landa 19, 20 Peter Landschützer 26 Andrew Lenton 27 Ivan D. Lima 16 Gregg Marland 28 Jeremy T. Mathis 13 Nicolas Metzl 29 Yukihiro Nojiri 25 Are Olsen 30 Tsuneo Ono 31 S. Peng 32 Wouter Peters 33 Benjamin Pfeil 19, 20 Benjamin Poulter 34 M. R. Raupach 35 P. Regnier 36 Christian Rödenbeck 37 Shu Saito 38 Joseph E. Salisbury 39 Ute Schuster 6 Jörg Schwinger 19, 20 Roland Séférian 40 Joachim Segschneider 41 Tobias Steinhoff 42 Benjamin D. Stocker 43, 44 Adrienne J. Sutton 45, 13 Taro Takahashi 46 Bronte Tilbrook 47 Guido R. van der Werf 48 Nicolas Viovy 3, 49 Y.-P. Wang 47 Rik H. Wanninkhof 50 Andrew J. Wiltshire 51 N. Zeng 52
* Corresponding author
LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] : DRF/LSCE
9 CHIM - CHImie Marine
AD2M - Adaptation et diversité en milieu marin
12 SATINV - Modélisation INVerse pour les mesures atmosphériques et SATellitaires
LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] : DRF/LSCE
29 E-CO2 - Équipe CO2
LOCEAN - Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques
49 MOSAIC - Modélisation des Surfaces et Interfaces Continentales
LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] : DRF/LSCE
Abstract : Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1 and SLAND was 2.5 ± 0.9 GtC yr−1. GATMwas high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFFFand 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).
Document type :
Journal articles
Complete list of metadata
Contributor : Françoise Pinsard <>
Submitted on : Thursday, January 7, 2016 - 1:22:56 PM
Last modification on : Monday, April 5, 2021 - 2:26:11 PM
Long-term archiving on: : Friday, April 8, 2016 - 1:23:07 PM


Publication funded by an institution


Distributed under a Creative Commons Attribution 4.0 International License



Corinne Le Quéré, Robbie M. Andrew, Glen P. Peters, Philippe Ciais, Pierre Friedlingstein, et al.. Global carbon budget 2014. Earth System Science Data, Copernicus Publications, 2015, 7 (1), pp.47- 85. ⟨10.5194/essd-7-47-2015⟩. ⟨hal-01150560⟩



Record views


Files downloads