Hardness of conjugacy, embedding and factorization of multidimensional subshifts

Abstract : Subshifts of finite type are sets of colorings of the plane defined by local constraints. They can be seen as a discretization of continuous dynamical systems. We investigate here the hardness of deciding factorization, conjugacy and embedding of subshifts in dimensions $d > 1$ for subshifts of finite type and sofic shifts and in dimensions $d\geq 1$ for effective shifts. In particular, we prove that the factorization and embedding problems are $\Sigma^0_3$ -complete and $\Sigma^0_1$- complete respectively for SFTs, sofic and effective subshifts. Conjugacy on the other side is $\Sigma^0_1$-complete for SFTs and $\Sigma^0_3$-complete for sofic and effective shifts.
Type de document :
Article dans une revue
Journal of Computer and System Sciences, Elsevier, 2015, http://dx.doi.org/10.1016/j.jcss.2015.05.003. 〈10.1016/j.jcss.2015.05.003〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01150419
Contributeur : Pascal Vanier <>
Soumis le : vendredi 12 juin 2015 - 12:46:02
Dernière modification le : mercredi 20 juin 2018 - 10:36:02
Document(s) archivé(s) le : mercredi 19 avril 2017 - 20:32:40

Fichier

jcss.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Emmanuel Jeandel, Pascal Vanier. Hardness of conjugacy, embedding and factorization of multidimensional subshifts . Journal of Computer and System Sciences, Elsevier, 2015, http://dx.doi.org/10.1016/j.jcss.2015.05.003. 〈10.1016/j.jcss.2015.05.003〉. 〈hal-01150419〉

Partager

Métriques

Consultations de la notice

315

Téléchargements de fichiers

118