Incremental complexity of a bi-objective hypergraph transversal problem

Abstract : The hypergraph transversal problem has been intensively studied, from both a theoretical and a practical point of view. In particular , its incremental complexity is known to be quasi-polynomial in general and polynomial for bounded hypergraphs. Recent applications in computational biology however require to solve a generalization of this problem, that we call bi-objective transversal problem. The instance is in this case composed of a pair of hypergraphs (A, B), and the aim is to find minimal sets which hit all the hyperedges of A while intersecting a minimal set of hyperedges of B. In this paper, we formalize this problem, link it to a problem on monotone boolean ∧ − ∨ formulae of depth 3 and study its incremental complexity.
Type de document :
Communication dans un congrès
Fundamentals of Computation Theory (FCT2015), Aug 2015, Gdansk, Poland. Lecture Notes in Computer Science, 9210, pp.202-213, 2015, Fundamentals of Computation Theory (FCT2015). <10.1007/978-3-319-22177-9_16 >
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01149392
Contributeur : Etienne Birmele <>
Soumis le : vendredi 22 mai 2015 - 12:29:33
Dernière modification le : mardi 11 octobre 2016 - 12:02:17
Document(s) archivé(s) le : lundi 14 septembre 2015 - 20:02:58

Fichiers

FCT2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ricardo Andrade, Etienne Birmelé, Arnaud Mary, Thomas Picchetti, Marie-France Sagot. Incremental complexity of a bi-objective hypergraph transversal problem. Fundamentals of Computation Theory (FCT2015), Aug 2015, Gdansk, Poland. Lecture Notes in Computer Science, 9210, pp.202-213, 2015, Fundamentals of Computation Theory (FCT2015). <10.1007/978-3-319-22177-9_16 >. <hal-01149392>

Partager

Métriques

Consultations de
la notice

169

Téléchargements du document

86