Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic

Abstract : Several different techniques and softwares intend to improve the accuracy of results computed in a fixed finite precision. Here we focus on methods to improve the accuracy of summation, dot product and polynomial evaluation. Such algorithms exist real floating point numbers. In this paper, we provide new algorithms which deal with complex floating point numbers. We show that the computed results are as accurate as if computed in twice the working precision. The algorithms are simple since they only require addition subtraction and multiplication of floating point numbers in the same working precision as the given data.
Type de document :
Article dans une revue
Information and Computation, Elsevier, 2012, pp.57-71. 〈10.1016/j.ic.2011.09.003〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01146509
Contributeur : Lip6 Publications <>
Soumis le : mardi 28 avril 2015 - 14:46:11
Dernière modification le : lundi 15 juin 2015 - 15:07:49

Identifiants

Collections

Citation

Stef Graillat, Valérie Ménissier-Morain. Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic. Information and Computation, Elsevier, 2012, pp.57-71. 〈10.1016/j.ic.2011.09.003〉. 〈hal-01146509〉

Partager

Métriques

Consultations de la notice

48