Multi-parametric solutions to the NLS equation

Abstract : The structure of the solutions to the one dimensional focusing nonlin-ear Schrödinger equation (NLS) for the order N in terms of quasi rational functions is given here. We first give the proof that the solutions can be expressed as a ratio of two wronskians of order 2N and then two determinants by an exponential depending on t with 2N − 2 parameters. It also is proved that for the order N , the solutions can be written as the product of an exponential depending on t by a quotient of two polynomials of degree N (N + 1) in x and t. The solutions depend on 2N − 2 parameters and give when all these parameters are equal to 0, the analogue of the famous Peregrine breather PN. It is fundamental to note that in this representation at order N , all these solutions can be seen as deformations with 2N − 2 parameters of the famous Peregrine breather PN. With this method, we already built Peregrine breathers until order N = 10, and their deformations depending on 2N − 2 parameters.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Pierre Gaillard <>
Soumis le : jeudi 26 mars 2015 - 16:54:16
Dernière modification le : mardi 12 janvier 2016 - 12:57:59
Document(s) archivé(s) le : jeudi 2 juillet 2015 - 07:36:31


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01135737, version 1
  • ARXIV : 1503.07899



Pierre Gaillard. Multi-parametric solutions to the NLS equation. 2015. <hal-01135737>



Consultations de
la notice


Téléchargements du document