Nonnegative tensor CP decomposition of hyperspectral data

Miguel Angel Veganzones 1, 2 Jérémy E. Cohen 1 Rodrigo Cabral Farias 1 Jocelyn Chanussot 2, 3 Pierre Comon 1
1 GIPSA-CICS - CICS
GIPSA-DIS - Département Images et Signal
2 GIPSA-SIGMAPHY - SIGMAPHY
GIPSA-DIS - Département Images et Signal
Abstract : New hyperspectral missions will collect huge amounts of hyperspectral data. Besides, it is possible now to acquire time series and multiangular hyperspectral images. The process and analysis of these big data collections will require common hyperspectral techniques to be adapted or reformulated. The tensor decomposition, \textit{a.k.a.} multiway analysis, is a technique to decompose multiway arrays, that is, hypermatrices with more than two dimensions (ways). Hyperspectral time series and multiangular acquisitions can be represented as a 3-way tensor. Here, we apply Canonical Polyadic tensor decomposition techniques to the blind analysis of hyperspectral big data. In order to do so, we use a novel compression-based nonnegative CP decomposition. We show that the proposed methodology can be interpreted as multilinear blind spectral unmixing, a higher order extension of the widely known spectral unmixing. In the proposed approach, the big hyperspectral tensor is decomposed in three sets of factors which can be interpreted as spectral signatures, their spatial distribution and temporal/angular changes. We provide experimental validation using a study case of the snow coverage of the French Alps during the snow season.
Type de document :
Article dans une revue
IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2016, 54 (5), pp.2577-2588. 〈http://ieeexplore.ieee.org/document/7360181/〉. 〈10.1109/TGRS.2015.2503737〉
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01134470
Contributeur : Miguel Angel Veganzones <>
Soumis le : mardi 24 novembre 2015 - 11:35:09
Dernière modification le : mercredi 19 septembre 2018 - 01:15:04
Document(s) archivé(s) le : vendredi 28 avril 2017 - 13:51:07

Fichier

Veganzones-final.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Citation

Miguel Angel Veganzones, Jérémy E. Cohen, Rodrigo Cabral Farias, Jocelyn Chanussot, Pierre Comon. Nonnegative tensor CP decomposition of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2016, 54 (5), pp.2577-2588. 〈http://ieeexplore.ieee.org/document/7360181/〉. 〈10.1109/TGRS.2015.2503737〉. 〈hal-01134470v2〉

Partager

Métriques

Consultations de la notice

1485

Téléchargements de fichiers

791