Tail index estimation, concentration and adaptivity

Abstract : This paper presents an adaptive version of the Hill estimator based on Lespki's model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand's concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata's representation of slowly varying functions, and Rényi 's charac-terisation of the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

Contributeur : Maud Thomas <>
Soumis le : mercredi 18 mars 2015 - 11:14:33
Dernière modification le : vendredi 4 janvier 2019 - 17:32:34
Document(s) archivé(s) le : lundi 22 juin 2015 - 07:06:31


Fichiers produits par l'(les) auteur(s)



Stéphane Boucheron, Maud Thomas. Tail index estimation, concentration and adaptivity. 2015. 〈hal-01132911〉



Consultations de la notice


Téléchargements de fichiers