Skip to Main content Skip to Navigation
Journal articles

Convergence and Counting in Infinite Measure

Abstract : We construct negatively curved and non compact finite volume manifolds which are of divergent type without the critical gap property. We investigate the behavior of the counting function associated to their fundamental group.
Complete list of metadatas

Cited literature [32 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01127737
Contributor : Marc Peigné <>
Submitted on : Sunday, March 8, 2015 - 9:25:41 AM
Last modification on : Thursday, April 16, 2020 - 2:32:05 PM
Document(s) archivé(s) le : Monday, April 17, 2017 - 3:56:29 AM

File

comptage.exotic.latticeV9.pdf
Files produced by the author(s)

Identifiers

Citation

Françoise Dal'Bo-Milonet, Marc Peigné, Jean-Claude Picaud, Andrea Sambusetti. Convergence and Counting in Infinite Measure. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2017, 67 (2), pp.483-520. ⟨10.5802/aif.3089⟩. ⟨hal-01127737⟩

Share

Metrics

Record views

417

Files downloads

356