Fouille de motifs séquentiels pour la découverte de relations entre gènes et maladies rares

Nicolas Béchet 1 Peggy Cellier 2 Thierry Charnois 3 Bruno Crémilleux 4
1 EXPRESSION - Expressiveness in Human Centered Data/Media
UBS - Université de Bretagne Sud, IRISA-D6 - MEDIA ET INTERACTIONS
2 LIS - Logical Information Systems
IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
4 Equipe CODAG - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Orphanet provides an international web-based knowledge portal for rare diseases including a collection of review articles. However, reviews and literature monitoring are manual. Thus, new documentation about a rare disease is a time-consuming process and automatically discovering knowledge from a large collection of texts is a crucial issue. This context represents a strong motivation to address the problem of extracting gene–rare diseases relationships from texts. In this paper, we tackle this issue with a cross-fertilization of information extraction and data mining techniques (sequential pattern mining under constraints). Experiments show the interest of the method for the documentation of rare diseases.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01119525
Contributor : Peggy Cellier <>
Submitted on : Monday, February 23, 2015 - 2:15:21 PM
Last modification on : Tuesday, February 26, 2019 - 6:06:02 PM

Identifiers

  • HAL Id : hal-01119525, version 1

Citation

Nicolas Béchet, Peggy Cellier, Thierry Charnois, Bruno Crémilleux. Fouille de motifs séquentiels pour la découverte de relations entre gènes et maladies rares. Revue des Sciences et Technologies de l'Information - Série RIA : Revue d'Intelligence Artificielle, Lavoisier, 2014, 28/2-3, pp.245-270. ⟨hal-01119525⟩

Share

Metrics

Record views

510