Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics

Guillaume Charpiat 1, 2 Olivier Faugeras 3, 2 Renaud Keriven 4, 2 Pierre Maurel 5, 2
1 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
2 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
3 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
5 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This chapter proposes a framework for dealing with two problems related to the analysis of shapes: the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and Zolésio [8], we consider the characteristic functions of the subsets of ℝ2 and their distance functions. The L 2 norm of the difference of characteristic functions and the L∞ and the W 1,2 norms of the difference of distance functions define interesting topologies, in particular that induced by the well-known Hausdorff distance. Because of practical considerations arising from the fact that we deal with image shapes defined on finite grids of pixels, we restrict our attention to subsets of ℝ2 of positive reach in the sense of Federer [12], with smooth boundaries of bounded curvature. For this particular set of shapes we show that the three previous topologies are equivalent. The next problem we consider is that of warping a shape onto another by infinitesimal gradient descent, minimizing the corresponding distance. Because the distance function involves an inf, it is not differentiable with respect to the shape. We propose a family of smooth approximations of the distance function which are continuous with respect to the Hausdorff topology, and hence with respect to the other two topologies. We compute the corresponding Gâteaux derivatives. They define deformation flows that can be used to warp a shape onto another by solving an initial value problem. We show several examples of this warping and prove properties of our approximations that relate to the existence of local minima. We then use this tool to produce computational de.nitions of the empirical mean and covariance of a set of shape examples. They yield an analog of the notion of principal modes of variation. We illustrate them on a variety of examples.
Type de document :
Chapitre d'ouvrage
Krim, Hamid and Yezzi, Anthony. Statistics and Analysis of Shapes, Birkhäuser, pp.363--395, 2006, 978-0-8176-4481-9. 〈10.1007/0-8176-4481-4_15〉. 〈http://link.springer.com/chapter/10.1007%2F0-8176-4481-4_15〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01117516
Contributeur : Pierre Maurel <>
Soumis le : mercredi 18 février 2015 - 16:37:27
Dernière modification le : lundi 4 mars 2019 - 14:07:55
Document(s) archivé(s) le : samedi 12 septembre 2015 - 18:20:20

Fichier

Book_KrimYezzy_Shape_Statistic...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guillaume Charpiat, Olivier Faugeras, Renaud Keriven, Pierre Maurel. Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics. Krim, Hamid and Yezzi, Anthony. Statistics and Analysis of Shapes, Birkhäuser, pp.363--395, 2006, 978-0-8176-4481-9. 〈10.1007/0-8176-4481-4_15〉. 〈http://link.springer.com/chapter/10.1007%2F0-8176-4481-4_15〉. 〈hal-01117516〉

Partager

Métriques

Consultations de la notice

745

Téléchargements de fichiers

214