A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding

Abstract : A complete modeling of heat and fluid flow applied to laser welding regimes is proposed. This model has been developed using only a graphical user interface of a finite element commercial code and can be easily usable in industrial R&D environments. The model takes into account the three phases of the matter: the vaporized metal, the liquid phase, and the solid base. The liquid/vapor interface is tracked using the Level-Set method. To model the energy deposition, a new approach is proposed which consists of treating laser under its wave form by solving Maxwell's equations. All these physics are coupled and solved simultaneously in Comsol Multyphysics®. The simulations show keyhole oscillations and the formation of porosity. A comparison of melt pool shapes evolution calculated from the simulations and experimental macrographs shows good correlation. Finally, the results of a three-dimensional simulation of a laser welding process are presented. The well-known phenomenon of humping is clearly shown by the model.
Type de document :
Article dans une revue
Journal of Laser Applications, Laser Institute of America, 2014, 26 (4), pp.042001. 〈10.2351/1.4886835〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01113130
Contributeur : Noluenn Chauvin <>
Soumis le : vendredi 1 février 2019 - 13:09:38
Dernière modification le : mercredi 13 février 2019 - 17:38:08

Fichier

courtois2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mickael Courtois, Muriel Carin, Philippe Le Masson, Sadok Gaied, Mikhaël Balabane. A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding. Journal of Laser Applications, Laser Institute of America, 2014, 26 (4), pp.042001. 〈10.2351/1.4886835〉. 〈hal-01113130〉

Partager

Métriques

Consultations de la notice

127

Téléchargements de fichiers

3