A distinguisher for high rate McEliece cryptosystems

Abstract : The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field. Our technique can solve the GCD problem in polynomial-time provided that the codes have rates sufficiently large. The key ingredient is an algebraic characterization of the key-recovery problem. The idea is to consider the dimension of the solution space of a linearized system deduced from a particular polynomial system describing a key-recovery. It turns out that experimentally this dimension depends on the type of code. Explicit formulas derived from extensive experimentations for the value of the dimension are provided for “generic” random, alternant, and Goppa code over any alphabet. Finally, we give explanations of these formulas in the case of random codes, alternant codes over any field and binary Goppa codes.
Type de document :
Communication dans un congrès
ITW 2011- IEEE Information Theory Workshop, Oct 2011, Paraty, Brazil. IEEE, pp.282-286, <10.1109/ITW.2011.6089437>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01108602
Contributeur : Jean-Pierre Tillich <>
Soumis le : vendredi 23 janvier 2015 - 10:13:18
Dernière modification le : mardi 30 mai 2017 - 01:04:18

Identifiants

Collections

Citation

Jean-Charles Faugère, Valérie Gauthier-Umana, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich. A distinguisher for high rate McEliece cryptosystems. ITW 2011- IEEE Information Theory Workshop, Oct 2011, Paraty, Brazil. IEEE, pp.282-286, <10.1109/ITW.2011.6089437>. <hal-01108602>

Partager

Métriques

Consultations de la notice

248