HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

On $n$ numbers on a circle

Abstract : Let $[a_1(0),\ldots,a_n(0)]$ be a real vector; define recursively $a_i(t+1)=|a_i(t)-a_{(i+1)}(t)|$. This paper is devoted to the study of $[a_1(t),\ldots,a_n(t)]$ for $t$ tending to infinity.
Keywords : circle periodic orbits
Document type :
Journal articles
Complete list of metadata

Cited literature [9 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01104323
Contributor : Romain Vanel Connect in order to contact the contributor
Submitted on : Friday, January 16, 2015 - 3:17:02 PM
Last modification on : Monday, March 28, 2022 - 8:14:08 AM
Long-term archiving on: : Saturday, April 15, 2017 - 6:48:35 PM

File

11Article3.pdf
Explicit agreement for this submission

Identifiers

Collections

Citation

Andrzej Schinzel, Michal Misiurewicz. On $n$ numbers on a circle. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1988, Volume 11 - 1988, pp.30 - 39. ⟨10.46298/hrj.1988.105⟩. ⟨hal-01104323⟩

Share

Metrics

Record views

283

Files downloads

586