Abstract : Let $[a_1(0),\ldots,a_n(0)]$ be a real vector; define recursively $a_i(t+1)=|a_i(t)-a_{(i+1)}(t)|$. This paper is devoted to the study of $[a_1(t),\ldots,a_n(t)]$ for $t$ tending to infinity.
https://hal.archives-ouvertes.fr/hal-01104323 Contributor : Romain VanelConnect in order to contact the contributor Submitted on : Friday, January 16, 2015 - 3:17:02 PM Last modification on : Monday, March 28, 2022 - 8:14:08 AM Long-term archiving on: : Saturday, April 15, 2017 - 6:48:35 PM
Andrzej Schinzel, Michal Misiurewicz. On $n$ numbers on a circle. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1988, Volume 11 - 1988, pp.30 - 39. ⟨10.46298/hrj.1988.105⟩. ⟨hal-01104323⟩