Counting the Number of Points on Elliptic Curves over Finite Fields: Strategies and Performances

Abstract : Cryptographic schemes using elliptic curves over finite fields require the computation of the cardinality of the curves. Dramatic progress have been achieved recently in that field. The aim of this article is to highlight part of these improvements and to describe an efficient implementation of them in the particular case of the field $GF(2^n)$, for $n \leq 500$.
Type de document :
Communication dans un congrès
L.C. Guillou; J.-J. Quisquater. EUROCRYPT '95, May 1995, Saint-Malo, France. Springer, Advances in Cryptology - International Conference on the Theory and Application of Cryptographic Techniques, 921, Lecture Notes in Computer Science. 〈10.1007/3-540-49264-X_7〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01102046
Contributeur : Reynald Lercier <>
Soumis le : lundi 12 janvier 2015 - 01:04:46
Dernière modification le : jeudi 9 février 2017 - 15:14:50

Identifiants

Collections

Citation

Reynald Lercier, François Morain. Counting the Number of Points on Elliptic Curves over Finite Fields: Strategies and Performances. L.C. Guillou; J.-J. Quisquater. EUROCRYPT '95, May 1995, Saint-Malo, France. Springer, Advances in Cryptology - International Conference on the Theory and Application of Cryptographic Techniques, 921, Lecture Notes in Computer Science. 〈10.1007/3-540-49264-X_7〉. 〈hal-01102046〉

Partager

Métriques

Consultations de la notice

80