ADAPTIVE ESTIMATION IN THE FUNCTIONAL NONPARAMETRIC REGRESSION MODEL

Abstract : In this paper, we consider nonparametric regression estimation when the predictor is a functional random variable (typically a curve) and the response is scalar. Starting from a classical collection of kernel estimates, the bias-variance decomposition of a pointwise risk is investigated to understand what can be expected at best from adaptive estimation. We propose a fully data-driven local bandwidth selection rule in the spirit of the Goldenshluger and Lepski method. The main result is a nonasymptotic risk bound which shows the optimality of our tuned estimator from the oracle point of view. Convergence rates are also derived for regression functions belonging to Hölder spaces and under various assumptions on the rate of decay of the small ball probability of the explanatory variable. A simulation study also illustrates the good practical performances of our estimator.
Type de document :
Article dans une revue
Journal of Multivariate Analysis, Elsevier, 2016, 146, pp.105--118. <10.1016/j.jmva.2015.07.001>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01099520
Contributeur : Angelina Roche <>
Soumis le : dimanche 4 janvier 2015 - 15:50:29
Dernière modification le : lundi 5 décembre 2016 - 18:38:29
Document(s) archivé(s) le : dimanche 5 avril 2015 - 10:10:47

Fichier

regression2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gaëlle Chagny, Angelina Roche. ADAPTIVE ESTIMATION IN THE FUNCTIONAL NONPARAMETRIC REGRESSION MODEL. Journal of Multivariate Analysis, Elsevier, 2016, 146, pp.105--118. <10.1016/j.jmva.2015.07.001>. <hal-01099520>

Partager

Métriques

Consultations de
la notice

253

Téléchargements du document

234