A nonconvex regularized approach for phase retrieval

Abstract : With the development of new imaging systems delivering large-size data sets, phase retrieval has become recently the focus of much attention. The problem is especially challenging due to its intrinsically nonconvex formulation. In addition, the applicability of many existing solutions may be limited either by their estimation performance or by their computational cost, especially in the case of non-Fourier measurements. In this paper, we propose a novel phase retrieval approach, which is based on a smooth nonconvex approximation of the standard data fidelity term. In addition, the proposed method allows us to employ a wide range of convex separable regularization functions. The optimization process is performed by a block coordinate proximal algorithm which is amenable to solving large-scale problems. An application of this algorithm to an image reconstruction problem shows that it may be very competitive with respect to state-of-the-art methods.
Type de document :
Communication dans un congrès
21st IEEE International Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France. 2014
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01094452
Contributeur : Emilie Chouzenoux <>
Soumis le : mardi 16 décembre 2014 - 19:23:33
Dernière modification le : mercredi 27 janvier 2016 - 17:37:38
Document(s) archivé(s) le : samedi 15 avril 2017 - 08:10:08

Fichier

ICIP2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01094452, version 1

Collections

Citation

Audrey Repetti, Emilie Chouzenoux, Jean-Christophe Pesquet. A nonconvex regularized approach for phase retrieval. 21st IEEE International Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France. 2014. 〈hal-01094452〉

Partager

Métriques

Consultations de la notice

271

Téléchargements de fichiers

178