PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue BMC Plant Biology Année : 2013

PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics.

M. Chantreau
  • Fonction : Auteur
S. Grec
  • Fonction : Auteur
M. Dalmais
  • Fonction : Auteur
C. Paysant-Leroux
R. Tavernier
  • Fonction : Auteur
J.P. Trouvé
  • Fonction : Auteur
M. Chatterjee
  • Fonction : Auteur
X. Guillot
V. Brunaud
Brigitte Chabbert
A. Bendahmane
B. Thomasset
S. Hawkins
  • Fonction : Auteur

Résumé

Background: Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. Results: A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. Conclusions: We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.

Domaines

Biotechnologies
Fichier principal
Vignette du fichier
Chantreau BMCPlantBiol 2013_1 (2.68 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01093161 , version 1 (29-05-2020)

Identifiants

Citer

M. Chantreau, S. Grec, L. Gutierrez, M. Dalmais, Christophe Pineau, et al.. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics.. BMC Plant Biology, 2013, 13 (159), pp.159. ⟨10.1186/1471-2229-13-159⟩. ⟨hal-01093161⟩
104 Consultations
25 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More