Toward the asymptotic count of bi-modular hidden patterns under probabilistic dynamical sources: a case study

Loïck Lhote 1 Manuel E. Lladser 2
1 Equipe AMACC - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Consider a countable alphabet $\mathcal{A}$. A multi-modular hidden pattern is an $r$-tuple $(w_1,\ldots , w_r)$, where each $w_i$ is a word over $\mathcal{A}$ called a module. The hidden pattern is said to occur in a text $t$ when the later admits the decomposition $t = v_0 w_1v_1 \cdots v_{r−1}w_r v_r$, for arbitrary words $v_i$ over $\mathcal{A}$. Flajolet, Szpankowski and Vallée (2006) proved via the method of moments that the number of matches (or occurrences) with a multi-modular hidden pattern in a random text $X_1\cdots X_n$ is asymptotically Normal, when $(X_n)_{n\geq1}$ are independent and identically distributed $\mathcal{A}$-valued random variables. Bourdon and Vallée (2002) had conjectured however that asymptotic Normality holds more generally when $(X_n)_{n\geq1}$ is produced by an expansive dynamical source. Whereas memoryless and Markovian sequences are instances of dynamical sources with finite memory length, general dynamical sources may be non-Markovian i.e. convey an infinite memory length. The technical difficulty to count hidden patterns under sources with memory is the context-free nature of these patterns as well as the lack of logarithm-and exponential-type transformations to rewrite the product of non-commuting transfer operators. In this paper, we address a case study in which we have successfully overpassed the aforementioned difficulties and which may illuminate how to address more general cases via auto-correlation operators. Our main result shows that the number of matches with a bi-modular pattern $(w_1, w_2)$ normalized by the number of matches with the pattern $w_1$, where $w_1$ and $w_2$ are different alphabet characters, is indeed asymptotically Normal when $(X_n)_{n\geq1}$ is produced by a holomorphic probabilistic dynamical source.
Type de document :
Communication dans un congrès
23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12) , Jun 2012, Montréal, Canada. DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), 2012
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01082042
Contributeur : Greyc Référent <>
Soumis le : mercredi 12 novembre 2014 - 14:50:58
Dernière modification le : mardi 7 mars 2017 - 15:18:47
Document(s) archivé(s) le : vendredi 13 février 2015 - 11:06:19

Fichier

ACTI-LHOTE-2012-1.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

  • HAL Id : hal-01082042, version 1

Collections

Citation

Loïck Lhote, Manuel E. Lladser. Toward the asymptotic count of bi-modular hidden patterns under probabilistic dynamical sources: a case study. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12) , Jun 2012, Montréal, Canada. DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), 2012. <hal-01082042>

Partager

Métriques

Consultations de
la notice

189

Téléchargements du document

52