Majorize-Minimize adapted Metropolis-Hastings algorithm. Application to multichannel image recovery

Abstract : One challenging task in MCMC methods is the choice of the proposal density. It should ideally provide an accurate approximation of the target density with a low computational cost. In this paper, we are interested in Langevin diffusion where the proposal accounts for a directional component. We propose a novel method for tuning the related drift term. This term is preconditioned by an adaptive matrix based on a Majorize-Minimize strategy. This new procedure is shown to exhibit a good performance in a multispectral image restoration example.
Type de document :
Communication dans un congrès
22th European Signal Processing Conference (EUSIPCO 2014), Sep 2014, Lisbon, Portugal. 2014
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01077273
Contributeur : Emilie Chouzenoux <>
Soumis le : vendredi 24 octobre 2014 - 12:11:10
Dernière modification le : mercredi 27 janvier 2016 - 17:37:30
Document(s) archivé(s) le : dimanche 25 janvier 2015 - 10:20:15

Fichier

eusipco2014C.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01077273, version 1

Collections

Citation

Yosra Marnissi, Amel Benazza-Benyahia, Emilie Chouzenoux, Jean-Christophe Pesquet. Majorize-Minimize adapted Metropolis-Hastings algorithm. Application to multichannel image recovery. 22th European Signal Processing Conference (EUSIPCO 2014), Sep 2014, Lisbon, Portugal. 2014. <hal-01077273>

Partager

Métriques

Consultations de
la notice

115

Téléchargements du document

82