Classifier systems evolving multi-agent system with distributed elitism

Abstract : -Classifier systems are rule-based control systems for the learning of more or less complex tasks. They evolve in an autonomous way through solution without any ex-ternal help. The knowledge base (the population) con-sists of rule sets (the individuals) randomly generated. The population evolves due to the use of a genetic algorithm. Solving complex problems with classifier systems involves problems to be split into simple ones. These simple prob-lems need to evolve through the main complex problem, 'co-evolving' as agents in a multi-agent system. Two different conceptual approaches are used here. First is Elitism that is inspired by Darwin, distinct agents evolving always keeping alive their best members. Second is Dis-tributed Elitism which is a logical enhancement of Elitism where agents knowledge is distributed to make the whole evolve through solution. The two concepts have shown in-teresting experimental results but are still very different in use. Mixing them seems to be a fairly good solution.
Type de document :
Communication dans un congrès
Congress On Evolutionary Computation 1999, Jul 1999, Washington D.C., United States. pp.1740 - 1746, 1999, <10.1109/CEC.1999.785484>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01074460
Contributeur : Gilles Enee <>
Soumis le : jeudi 8 janvier 2015 - 14:21:02
Dernière modification le : mercredi 8 avril 2015 - 16:35:01
Document(s) archivé(s) le : jeudi 9 avril 2015 - 10:05:38

Fichier

CEC99.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

Gilles Enee, Cathy Escazut. Classifier systems evolving multi-agent system with distributed elitism. Congress On Evolutionary Computation 1999, Jul 1999, Washington D.C., United States. pp.1740 - 1746, 1999, <10.1109/CEC.1999.785484>. <hal-01074460>

Partager

Métriques

Consultations de
la notice

88

Téléchargements du document

71