Continuous functions on the plane regular after one blowing-up

Abstract : We study rational functions admitting a continuous extension to the real affine space. First of all, we focus on the regularity of such functions exhibiting some nice properties of their partial derivatives. Afterwards, since these functions correspond to rational functions which become regular after some blowings-up, we work on the plane where it suffices to blow-up points and then we can count the number of stages of blowings-up necessary. In the latest parts of the paper, we investigate the ring of rational continuous functions on the plane regular after one stage of blowings-up. In particular, we prove a Positivstellensatz without denominator in this ring.
Type de document :
Article dans une revue
Mathematische Zeitschrift, Springer, 2017, 285 (1), pp.287-323. 〈10.1007/s00209-016-1708-8〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01069575
Contributeur : Goulwen Fichou <>
Soumis le : lundi 29 septembre 2014 - 14:15:33
Dernière modification le : jeudi 15 novembre 2018 - 11:56:35
Document(s) archivé(s) le : mardi 30 décembre 2014 - 11:20:47

Fichiers

Reg1Blow.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Goulwen Fichou, Ronan Quarez, Jean-Philippe Monnier. Continuous functions on the plane regular after one blowing-up. Mathematische Zeitschrift, Springer, 2017, 285 (1), pp.287-323. 〈10.1007/s00209-016-1708-8〉. 〈hal-01069575〉

Partager

Métriques

Consultations de la notice

511

Téléchargements de fichiers

128