GMRF Estimation under Topological and Spectral Constraints

Victorin Martin 1 Cyril Furtlehner 2 Yufei Han 3 Jean-Marc Lasgouttes 4
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We investigate the problem of Gaussian Markov random field selection under a non-analytic constraint: the estimated models must be compatible with a fast inference algorithm, namely the Gaussian belief propagation algorithm. To address this question, we introduce the *-IPS framework, based on iterative proportional scaling, which incrementally selects candidate links in a greedy manner. Besides its intrinsic sparsity-inducing ability, this algorithm is flexible enough to incorporate various spectral constraints, like e.g. walk summability, and topological constraints, like short loops avoidance. Experimental tests on various datasets, including traffic data from San Francisco Bay Area, indicate that this approach can deliver, with reasonable computational cost, a broad range of efficient inference models, which are not accessible through penalization with traditional sparsity-inducing norms.
Type de document :
Communication dans un congrès
Toon Calders; Floriana Esposito; Eyke Hüllermeier; Rosa Meo. 7th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2014, Nancy, France. Springer Berlin Heidelberg, 8725, pp.370-385, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-662-44851-9_24〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01065607
Contributeur : Victorin Martin <>
Soumis le : jeudi 18 septembre 2014 - 12:12:01
Dernière modification le : lundi 12 novembre 2018 - 11:01:24
Document(s) archivé(s) le : vendredi 19 décembre 2014 - 13:05:19

Fichier

ECML14_IPS_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Victorin Martin, Cyril Furtlehner, Yufei Han, Jean-Marc Lasgouttes. GMRF Estimation under Topological and Spectral Constraints. Toon Calders; Floriana Esposito; Eyke Hüllermeier; Rosa Meo. 7th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2014, Nancy, France. Springer Berlin Heidelberg, 8725, pp.370-385, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-662-44851-9_24〉. 〈hal-01065607〉

Partager

Métriques

Consultations de la notice

783

Téléchargements de fichiers

188