On the asymptotics of random forests

Abstract : The last decade has witnessed a growing interest in random forest models which are recognized to exhibit good practical performance, especially in high-dimensional settings. On the theoretical side, however, their predictive power remains largely unexplained, thereby creating a gap between theory and practice. The aim of this paper is twofold. Firstly, we provide theoretical guarantees to link finite forests used in practice (with a finite number M of trees) to their asymptotic counterparts. Using empirical process theory, we prove a uniform central limit theorem for a large class of random forest estimates, which holds in particular for Breiman's original forests. Secondly, we show that infinite forest consistency implies finite forest consistency and thus, we state the consistency of several infinite forests. In particular, we prove that q quantile forests---close in spirit to Breiman's forests but easier to study---are able to combine inconsistent trees to obtain a final consistent prediction, thus highlighting the benefits of random forests compared to single trees.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

Contributeur : Erwan Scornet <>
Soumis le : dimanche 7 septembre 2014 - 03:30:56
Dernière modification le : jeudi 21 mars 2019 - 14:14:28
Document(s) archivé(s) le : lundi 8 décembre 2014 - 10:10:50


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01061506, version 1
  • ARXIV : 1409.2090


Erwan Scornet. On the asymptotics of random forests. 2014. 〈hal-01061506〉



Consultations de la notice


Téléchargements de fichiers