Skip to Main content Skip to Navigation
Journal articles

Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model

Charlotte Dion 1
1 SVH - Statistique pour le Vivant et l’Homme
LJK - Laboratoire Jean Kuntzmann
Abstract : Two adaptive nonparametric procedures are proposed to estimate the density of the random effects in a mixed-effect Ornstein-Uhlenbeck model. First an estimator using deconvolution tools is introduced, which depends on two tuning parameters to be chosen in a data-driven way. The selection of these two parameters is achieved with a Goldenshluger and Lepski's method, extended to this particular case with a new two-dimensional penalized criterion. Then, we propose a kernel estimator of the density of the random effect, with a new bandwidth selection method. For both data driven estimators, risk bounds are provided in term of integrated $\mathbb{L}^2$-error. The estimators are evaluated on simulations and show good results. Finally, these nonparametric estimators are applied to a neuronal database of interspike intervals, and are compared with a previous parametric estimation.
Complete list of metadatas

Cited literature [36 references]  Display  Hide  Download
Contributor : Charlotte Dion <>
Submitted on : Sunday, February 7, 2016 - 1:32:37 PM
Last modification on : Friday, July 10, 2020 - 7:58:54 AM
Document(s) archivé(s) le : Saturday, November 12, 2016 - 11:52:26 AM


Files produced by the author(s)




Charlotte Dion. Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model. Metrika, Springer Verlag, 2016, 79 (8), pp.919-951. ⟨10.1007/s00184-016-0583-y⟩. ⟨hal-01023300v5⟩



Record views


Files downloads