Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model

Charlotte Dion 1
1 SVH - Statistique pour le Vivant et l’Homme
LJK - Laboratoire Jean Kuntzmann
Abstract : Two adaptive nonparametric procedures are proposed to estimate the density of the random effects in a mixed-effect Ornstein-Uhlenbeck model. First an estimator using deconvolution tools is introduced, which depends on two tuning parameters to be chosen in a data-driven way. The selection of these two parameters is achieved with a Goldenshluger and Lepski's method, extended to this particular case with a new two-dimensional penalized criterion. Then, we propose a kernel estimator of the density of the random effect, with a new bandwidth selection method. For both data driven estimators, risk bounds are provided in term of integrated $\mathbb{L}^2$-error. The estimators are evaluated on simulations and show good results. Finally, these nonparametric estimators are applied to a neuronal database of interspike intervals, and are compared with a previous parametric estimation.
Liste complète des métadonnées

Cited literature [36 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01023300
Contributor : Charlotte Dion <>
Submitted on : Sunday, February 7, 2016 - 1:32:37 PM
Last modification on : Monday, April 9, 2018 - 12:22:50 PM
Document(s) archivé(s) le : Saturday, November 12, 2016 - 11:52:26 AM

File

article_DION_08022016.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Charlotte Dion. Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model. Metrika, Springer Verlag, 2016, 79 (8), pp.919-951. ⟨10.1007/s00184-016-0583-y⟩. ⟨hal-01023300v5⟩

Share

Metrics

Record views

351

Files downloads

153