Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model

Charlotte Dion 1
1 SVH - Statistique pour le Vivant et l’Homme
LJK - Laboratoire Jean Kuntzmann
Abstract : Two adaptive nonparametric procedures are proposed to estimate the density of the random effects in a mixed-effect Ornstein-Uhlenbeck model. First an estimator using deconvolution tools is introduced, which depends on two tuning parameters to be chosen in a data-driven way. The selection of these two parameters is achieved with a Goldenshluger and Lepski's method, extended to this particular case with a new two-dimensional penalized criterion. Then, we propose a kernel estimator of the density of the random effect, with a new bandwidth selection method. For both data driven estimators, risk bounds are provided in term of integrated $\mathbb{L}^2$-error. The estimators are evaluated on simulations and show good results. Finally, these nonparametric estimators are applied to a neuronal database of interspike intervals, and are compared with a previous parametric estimation.
Type de document :
Article dans une revue
Metrika, Springer Verlag, 2016, 79 (8), pp.919-951. <10.1007/s00184-016-0583-y>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01023300
Contributeur : Charlotte Dion <>
Soumis le : dimanche 7 février 2016 - 13:32:37
Dernière modification le : jeudi 12 janvier 2017 - 20:18:15
Document(s) archivé(s) le : samedi 12 novembre 2016 - 11:52:26

Fichier

article_DION_08022016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Charlotte Dion. Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model. Metrika, Springer Verlag, 2016, 79 (8), pp.919-951. <10.1007/s00184-016-0583-y>. <hal-01023300v5>

Partager

Métriques

Consultations de
la notice

231

Téléchargements du document

62