Object Perception for Intelligent Vehicle Applications: A Multi-Sensor Fusion Approach

Trung-Dung Vu 1 Olivier Aycard 2 Fabio Tango 3
1 E-MOTION - Geometry and Probability for Motion and Action
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : The paper addresses the problem of object perception for intelligent vehicle applications with main tasks of detection, tracking and classification of obstacles where multiple sensors (i.e.: lidar, camera and radar) are used. New algorithms for raw sensor data processing and sensor data fusion are introduced making the most information from all sensors in order to provide a more reliable and accurate information about objects in the vehicle environment. The proposed object perception module is implemented and tested on a demonstrator car in real-life traffics and evaluation results are presented.
Type de document :
Communication dans un congrès
Intelligent Vehicles Symposium, 2014 IEEE, Jun 2014, Dearborn, MI, United States. pp.100-106, 2014
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01019527
Contributeur : Trung-Dung Vu <>
Soumis le : lundi 7 juillet 2014 - 11:31:58
Dernière modification le : lundi 5 octobre 2015 - 16:59:12
Document(s) archivé(s) le : mardi 7 octobre 2014 - 12:12:52

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01019527, version 1

Collections

Citation

Trung-Dung Vu, Olivier Aycard, Fabio Tango. Object Perception for Intelligent Vehicle Applications: A Multi-Sensor Fusion Approach. Intelligent Vehicles Symposium, 2014 IEEE, Jun 2014, Dearborn, MI, United States. pp.100-106, 2014. <hal-01019527>

Partager

Métriques

Consultations de
la notice

410

Téléchargements du document

1091