Efficient Pruning LMI Conditions for Branch-and-Prune Rank and Chirality-Constrained Estimation of the Dual Absolute Quadric

Abstract : We present a new globally optimal algorithm for self- calibrating a moving camera with constant parameters. Our method aims at estimating the Dual Absolute Quadric (DAQ) under the rank-3 and, optionally, camera centers chirality constraints. We employ the Branch-and-Prune paradigm and explore the space of only 5 parameters. Pruning in our method relies on solving Linear Matrix Inequality (LMI) feasibility and Generalized Eigenvalue (GEV) problems that solely depend upon the entries of the DAQ. These LMI and GEV problems are used to rule out branches in the search tree in which a quadric not satisfy- ing the rank and chirality conditions on camera centers is guaranteed not to exist. The chirality LMI conditions are obtained by relying on the mild assumption that the camera undergoes a rotation of no more than 90◦ between consec- utive views. Furthermore, our method does not rely on cal- culating bounds on any particular cost function and hence can virtually optimize any objective while achieving global optimality in a very competitive running-time.
Type de document :
Communication dans un congrès
IEEE Conference on Computer Vision and Pattern Recognition, Jun 2014, United States. pp.1-6, 2014
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01017687
Contributeur : Cédric Demonceaux <>
Soumis le : mercredi 2 juillet 2014 - 23:49:54
Dernière modification le : vendredi 3 février 2017 - 01:01:28
Document(s) archivé(s) le : jeudi 2 octobre 2014 - 12:00:28

Fichier

cvpr14-camera-ready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01017687, version 1

Collections

Citation

Adlane Habed, Danda Pani Paudel, Cédric Demonceaux, David Fofi. Efficient Pruning LMI Conditions for Branch-and-Prune Rank and Chirality-Constrained Estimation of the Dual Absolute Quadric. IEEE Conference on Computer Vision and Pattern Recognition, Jun 2014, United States. pp.1-6, 2014. 〈hal-01017687〉

Partager

Métriques

Consultations de
la notice

160

Téléchargements du document

65